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Abstract—Spectral clustering has been shown to be more
effective than most of the traditional clustering algorithms.
However, the heavy computational cost of spectral clustering
limits its applicability to large-scale clustering problems. To
perform spectral clustering on large datasets, in this paper,
we propose an accelerated spectral clustering method based on
sparse presentation where each data point is presented as sparse
linear combinations of a part of representative data points. The
hubs that appear frequently in the nearest neighbor lists of
other data points are selected as the representative data points,
by which a proper spectral embedding is constructed. Taking
advantage of the topological property of hubs, the proposed
method is able to achieve scalable and accurate clustering results.
We evaluated the proposed method on both synthetic and real-
world datasets to show its effectiveness in comparison to the
existing related methods.

Index Terms—large scale, spectral clustering, sparse presenta-
tion, hubness

I. INTRODUCTION

In the current digital era, new technologies and their
widespread usage have led to the emergence of massive data
called big data. Big data is the term for data sets that are
so voluminous and complex, which presents a significant
challenge for data analysis, since traditional data-processing
methods are inadequate to deal with them. Clustering is one
of the most important issues when dealing with big data [1].
Large scale datasets usually consist of some groups (clusters).
It is necessary to find the groups, retrieving important and
meaningful information.

Spectral clustering has attracted increasing attention due to
its superior performance on some challenging clustering tasks
[2]. Because of the capacity of partitioning data with com-
plexed structures, spectral clustering has been widely applied
in many research fields, including image segmentation [3],
[4], circuit layout [5], video retrieval [6] and bioinformatics
[7]. However, when the number of data points becomes large,
the applicability of spectral clustering is limited. The general
spectral clustering method consists of two main steps: (1)
constructing a similarity matrix; (2) calculating the eigen-
decomposition of the corresponding Laplacian matrix. For a
dataset with n data points, the two steps take computational
complexities of O(n2) and O(n3) respectively, which is an
unbearable burden for large-scale clustering problems.

Many accelerated spectral clustering methods have been
proposed to overcome the scalability problem by using sam-

pling techniques. Fowlkes et al. [8] apply the Nyström method
to reduce the high complexity in the eigen-decomposition
step. By randomly selecting a small subset of samples, a
similarity sub-matrix is constructed based on these samples.
The calculated eigenvectors based on the similarity sub-matrix
are used to estimate an approximation of the eigenvectors of
the original similarity matrix. Li et al. [9] further accelerate
the Nyström approximation based spectral clustering by using
the randomized low-rank matrix approximation algorithms.

Instead of reducing the complexity in the eigen-
decomposition step of spectral clustering, several methods
reduce the data size beforehand to construct the similarity
matrix. The K-means based approximate spectral clustering
(KASP) method [10] applies K-means with a large cluster
number p to find p center points. The general spectral cluster-
ing algorithm is then performed on the p cluster centers, with
each data point being assigned to the same cluster as its nearest
center. A similar method has been proposed by Shinnou and
Sasaki [11], which removes the data points close to the p
centers, and the general spectral clustering is performed on
the remaining data points plus the p centers. The removed
data points are finally assigned to the cluster as their nearest
centers.

Inspired by the recent progress on sparse coding [12], a
family of accelerated spectral clustering methods based on
sparse representation have been proposed [13], which have
been shown to be more effective than the aforementioned
accelerated spectral clustering methods. These methods select
a part of representative data points as the landmarks and
represent each data point as linear combinations of these
landmarks, by which the computational complexity can be
scaled linearly with the problem size. In [13], the authors
apply two methods to select the landmarks. One is randomly
selecting some data points as the landmarks, the other one
is using K-means clustering and finding the cluster centers as
the landmarks. Although the methods are effective and easy to
implement, a lot of information on the topological properties
of the data points is lost when selecting the landmarks.
Rafailidis et al. [14] propose an improved method to select
the landmarks by considering the topological properties of the
data points in the affinity graph. The landmarks are selected
by weighted pagerank algorithm, by which the weight values
of data points are ranked based on the incoming and outgoing



links. However, this method is no easy to implement and with
limited applicability.

In this paper, we propose an effective method to accelerate
spectral clustering based on sparse representation, which se-
lects the hubs as the landmarks. Hubness, the emergence of
hubs that appear frequently in the nearest neighbor lists of
other data points, is an important topological property of data,
especially for high-dimensional data [15]. The hubs have close
relationship with the data points, since they are the k nearest
neighbors of most of the data points. Many methods based on
hubness have been reported to be effective for redundancy
reduction and clustering accuracy improvement [16]. The
proposed method takes advantage of the topological property
of hubs to find a good sparse representation of data points,
which is easy to implement and is able to achieve scalable
and accurate clustering results. Extensive experiments on both
synthetic and real-world datasets show the effectiveness of
the proposed method in comparison to the existing related
methods.

The remainder of this paper is organized as follows. We
present the preliminaries in Section II. The proposed method
is introduced in Section III. The experimental results are
presented in Section IV. Finally, we provide some concluding
remarks in Section V.

II. PRELIMINARIES

A. Spectral Clustering

Given a set of n data points X = {x1, x2, ..., xn} in Rd and
some measure of similarity sji between data points xi and xj ,
the goal of spectral clustering is to partition the data points
into c clusters based on the spectrum of the similarity matrix.
The widely used method to calculate sji is the Gaussian kernel
function

Φ(xi, xj) = exp(−‖xi − xj‖2/2σ2), (1)

where ‖xi−xj‖ is the Euclidean distance between data points
xi and xj (i 6= j), and σ is the kernel parameter.

The general spectral clustering algorithm is summarized as
follows [17], [18] .

(1) Construct a similarity matrix S, where S = (sji).
(2) Compute the normalized Laplacian matrix L as L =

I − D−1/2SD−1/2, where D is the n × n diagonal matrix
with di =

∑n
j=1 sij on the diagonal.

(3) Compute the c smallest eigenvectors of L, and form the
matrix Y = (y1, y2, ..., yc)n×c using these eigenvectors as its
columns.

(4) Form the matrix B = (bij)n×c from Y by normalizing
the rows to norm 1, such as bij = yij/(

∑
p y

2
ip)1/2.

(5) Let bi ∈ Rc be a vector corresponding the ith row of
B, and cluster these points with the K-means method.

(6) Assign each data point xi to a given cluster if bi is
assigned to this cluster.

B. Sparse Representation

The method of sparse representation tries to represent each
data point by sparse linear combinations of a set of represen-
tative data points (i.e., landmarks), as

X ≈ LH, (2)

where L = [l1, l2, ...lp] is the set of landmarks selected
from x1, x2, ..., xn, H = [h1, h2, ...hn] is the p-dimensional
representation of the original data points with respect to the p
landmarks and H has sparse constraint, more specifically, on
each column.

For spectral clustering methods using sparse representation,
the objective is to design the similarity matrix S as [13]

S ≈ H̃T H̃, (3)

where H̃ = D̃−1/2H , D̃ is the p×p diagonal matrix with d̃i =∑n
j=1 hij on the diagonal. H is expressed as the similarities

of the n data points to the p landmarks. Thus, the selection
of the landmarks is significant to the calculation of similarity
matrix and crucial to the clustering result.

III. THE PROPOSED METHOD

In this section, we introduce the proposed accelerated
spectral clustering method based on sparse representation.
The proposed method first selects the data points with large
hubness score to represent each data point and construct the
approximated similarity matrix, then generates clusters based
on the eigen-decomposition of the approximated similarity
matrix.

A. Sparse Representation of Similarity Matrix

Hubness is an important topological property of data. The
hubness score of a data point is measured as the number
of times it occurs among the k nearest neighbors of other
data points, according to some distance measure. We use the
Euclidean distance in this paper. The hubness score of data
point xi is calculated as

Γ(xi) =

n∑
j=1

pij , (4)

where

pij =

{
1, xi is among the k nearest neighbors of xj ,
0, otherwise.

(5)
Directly calculating the hubness score of data points in-

volves the calculation of the k nearest neighbor graph of the
whole dataset, which is computationally expensive. To reduce
the computational complexity, we first divide the data points
into some parts, and then calculate the local hubness score
of data points in each part. The most efficient way to divide
the data points into some parts is random partition. Besides
random partition, we can also use the K-means method to
cluster the data points into some clusters/parts. For efficiency
consideration, we will focus on the random partition although



the comparison between random partition and the K-means
based partition is presented in the empirical study.

To form the matrix L in equation (2), we need to select
p landmarks l1, l2, ...lp. Suppose that all the data points are
divided into m parts P1, P2,...,Pm. In part Pi (i = 1, ...,m),
ni data points with the largest hubness score are selected as
the landmarks.

ni =
|Pi|
n
p, (6)

and if necessary some adjustments will be made to satisfy∑m
i=1 ni = p. After obtaining the matrix L, we can compute

the representation matrix H by solving (2). However, the
solution of (2) is time consuming for large-scale dataset.
To reduce the complexity, we compute H according to the
Nadaraya-Watson kernel regression [19].

We calculate the approximation x̃i for xi as

x̃i =

n∑
j=1

hij lj . (7)

As the assumption in [13], we know that hij should be larger
if xi is closer to the landmark lj . We can construct the sparse
representation matrix H by setting hij = 0 if lj is not among
the r(≤ p) nearest landmarks of xi. Denote Ni as the set of
landmarks that are among the r(≤ p) nearest landmarks of xi.
For i = 1, ..., n and lj ∈ Ni, the element hij is calculated as

hij =
Φ(xi, lj)∑

l
′
j∈Ni

Φ(xi, lj′ )
, (8)

where Φ(·) is the Gaussian kernel function as defined in
equation (1).

After constructing the sparse representation matrix H , the
approximated similarity matrix S can be calculated based on
H as shown in equation (3).

B. Generation of Clusters

Inspired by [13], we cluster the data points based on the
eigen-decomposition of the approximated similarity matrix S
by an efficient method. Let the Singular Value Decomposition
(SVD) of H̃ be calculated as

H̃ = UΣV T , (9)

where Σ = diag(σ1, σ2, ..., σp) and σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0
are the singular of H̃ , U = [u1, u2, ..., up] ∈ Rp×p and
the column vectors u1, u2, ..., up are called left singular vec-
tors, V = [v1, v2, ..., vp] ∈ Rn×p and the column vectors
v1, v2, ..., vp are called right singular vectors. It is easy to
verify that the column vectors of U are the eigenvectors of
H̃H̃T , and the column vectors of V are the eigenvectors of
H̃T H̃ which is exactly the eigenvectors of the approximated
similarity matrix S, as shown in equation (3).

Note that the size of matrix H̃H̃T is p×p. We first calculate
the eigenvectors of H̃H̃T to obtain U with complexity O(p3).
Then, we can obtain the eigenvectors of S = H̃T H̃ by
calculating V according to equation (9) as

V T = Σ−1UT H̃, (10)

Thus, the total time to obtain the eigen-decomposition of S
is O(p3 + p2n), which is a significant reduction from O(n3)
when p � n. Let each row of V be a data point. Finally,
K-means is applied to these data points to find the c clusters.
The proposed method is summarized in Algorithm 1.

Algorithm 1 The proposed method
Input:

Data matrix X = {x1, x2, ..., xn}; number of clusters c;
number of nearest neighbors k; number of partitions m;
number of landmarks p; number of nearest landmarks r;

Output:
c clusters;

1: Divide the data points into m parts using K means or
random partition;

2: Select ni landmarks that have the largest hubness score in
part Pi (i = 1, ...,m);

3: Construct a sparse representation matrix H ∈ Rp×n

between data points and the p landmarks according to
equation (8);

4: Obtain U = [u1, u2, ..., uc] by computing the first c
eigenvectors of H̃H̃T where H̃ = D̃−1/2H;

5: Compute V = [v1, v2, ..., vc] according to equation (10) ;
6: Generate c clusters by applying K-means in V with each

row being a data point.

C. Computational Complexity Analysis

We analyze the computational complexity of the proposed
method in four main steps.

(1) If we divide the data points into m parts by K-means,
the time complexity is O(tmn), where t is the number of
iterations in K-means. However, if we sue random partition,
the time complexity can be ignored comparing to the follow-
up steps.

(2) To select the landmarks from each part, we need to
measure the local hubness score of the data points in each part,
which involves the computation of local k nearest neighbors.
In this step, the time complexity is O(q2 + kq), where q =
max{|Pi|}, i = 1, ...,m.

(3) To compute the similarity matrix S, we need to construct
the sparse representation matrix H . For each data point, it
is necessary to find the r nearest landmarks from the p
landmarks. The time complexity in this step is O(pn).

(4) The time complexity of generating the left singular
vectors of is O(p3). The time complexity to derive the right
singular vectors is O(p2n),as shown in equation (10). Thus,
the total time complexity to obtain the eigenvectors of S is
O(p3 + p2n).

IV. EXPERIMENTAL RESULTS

In this section, we conduct several experiments based on
both synthetic and real-world datasets to evaluate the perfor-
mance of the proposed method. We adopt two widely used
evaluation metrics, i.e., Normalized Mutual Information (NMI)
and Accuracy (ACC), to evaluate the clustering results. The



Fig. 1. Chainlinks with 20 clusters.

detailed methods to calculate NMI and ACC can be referred to
[20]. A larger value of NMI/ACC denotes a better clustering
result. We also record the clustering time of the proposed
method.

We compare the proposed method with other existing related
methods, including

Nystrom: There are several variants available for the
Nyström approximation based spectral clustering. We choose
the method that using Matlab implementation with orthogo-
nalization, as that considered in [21].

LSC-R: Sparse representation based spectral clustering by
randomly selecting the landmarks, without considering the
topological properties of data points [13].

LSC-K: Sparse representation based spectral clustering by
using K-means clustering to find the cluster centers as the
landmarks [13].

To show the effectiveness of the accelerated spectral cluster-
ing methods, we also report the results of the original spectral
clustering. For the proposed accelerated spectral clustering
method using sparse representation based on hubness, we
implement two versions as follows.

LSC-RH: Short for Landmark-based Spectral Clustering
using random partition to find the hubs as the landmarks.

LSC-KH: Short for Landmark-based Spectral Clustering
using K-means partition to find the hubs as the landmarks.

There are four parameters in our method: the number
of nearest neighbors k; the number of partitions m; the
number of landmarks p; the number of nearest landmarks
r. For the sake of convenience, we set k = r and
p = 2m. As a result, the number of parameters in our
method is reduced to two. Throughout the experiments, k
is ranged over {3, 4, 5, 6, 7, 8, 9, 10} and p is ranged over
{100, 200, 300, 400, 500, 600, 700, 800, 900}. The best results
of all the methods by using different parameters are reported.
We repeat each experiment 20 times and report the mean
performance.

TABLE I
PROPERTIES OF DATASETS

Dataset # of samples # of Features # of Clusters
Chainlinks 10000 3 20

USPS 9298 256 10
TDT2 9394 36772 30

PenDigits 10992 16 10
SenVehicle 78823 100 3

A. Clustering Results on Synthetic Data

We use a 3D synthetic dataset called Chainlinks to evaluate
the performance. Chainlinks contains 10000 data points taken
from 20 clusters. The data points in each cluster are distributed
in a circle shape and denoted by different colors, as shown in
Fig. 1. The property of Chainlinks is summarized in Table I.

We compare the performance of different methods along
with the original spectral clustering method on Chainlinks,
and summarize the clustering time, clustering results in terms
of NMI and ACC in Tables II, III and IV, respectively. The
proposed LSC-RH and LSC-KH methods improve the cluster-
ing results of the synthetic data, while do not cause a large
increase in the computational time compared to other acceler-
ated methods. All the accelerated spectral clustering methods
reduce the clustering time of the original spectral clustering.
The clustering time of LSC-RH which using random partition
is very close to the compared methods. To further examine the
behaviors of these methods on the synthetic data, we evaluate
the clustering results by varying the number of landmarks.
The clustering results in terms of NMI and ACC are shown in
Fig. 2. As we can see, LSC-RH and LSC-KH achieve better
clustering results as the number of landmarks increases.

B. Clustering results on real-world data

We use four public real-world datasets to evaluate the per-
formance. The datasets are USPS [22], TDT2 [23], PenDigits
[24] and SenVehicle [25], which are wildly used to evaluate the
performance of large scale data clustering. The properties of
the datasets are summarized in Table I and briefly introduced
as follows.

USPS: An image dataset for handwritten text recognition.
It is taken from 10 clusters with each image being represented
as a 256-dimensional vector.

TDT2: A subset of the original TDT2 corpus from [23]. It
consists of document data from 6 media sets including APW,
NYT, VOA, RPI, CNN and ABC. The largest 30 categories
are kept in this subset.

PenDigits: A dataset of handwritten digits with 250 samples
collected from 44 writers. It uses the sampled coordinate
information of each digit.

SenVehicle: A dataset initially built to classify the moving
vehicles in a distributed wireless sensor network.

The performance on the four real-world datasets using
different methods along with the original spectral clustering
method are reported in Tables II, III and IV, respectively.
We can see that for the clustering results in terms of NMI



(a) NMI (b) ACC

Fig. 2. Clustering results by varying the number of landmarks on Chainlinks.

(a) NMI (b) ACC

Fig. 3. Clustering results by varying the number of landmarks on TDT2.

TABLE II
CLUSTERING TIME OF DIFFERENT METHODS (SECOND)

Dataset Chainlinks USPS TDT2 PenDigits SenVehicle
Original 52.86 53.27 60.07 61.23 4198
Nystrom 1.84 1.89 5.32 9.01 17.25
LSC-R 1.87 1.58 4.51 3.37 16.73
LSC-K 2.28 2.36 20.36 21.83 65.63

LSC-RH 2.19 2.28 19.24 22.87 62.48
LSC-KH 3.15 3.23 34.52 36.68 86.45

TABLE III
NMI OF DIFFERENT METHODS

Dataset Chainlinks USPS TDT2 PenDigits SenVehicle
Original 43.92 80.20 58.12 56.24 28.87
Nystrom 33.79 78.19 53.64 63.32 30.50
LSC-R 41.48 74.07 50.93 77.01 30.19
LSC-K 42.59 77.19 50.90 78.51 30.01

LSC-RH 42.89 79.65 56.62 77.51 29.67
LSC-KH 43.48 78.71 57.69 81.55 30.96

TABLE IV
ACC OF DIFFERENT METHODS

Dataset Chainlinks USPS TDT2 PenDigits SenVehicle
Original 43.12 69.82 47.45 60.38 63.67
Nystrom 36.59 73.74 42.49 62.03 67.09
LSC-R 42.69 67.85 45.65 78.22 65.99
LSC-K 43.74 68.74 42.31 76.43 66.68

LSC-RH 43.51 69.07 48.60 78.43 65.77
LSC-KH 44.78 74.01 52.79 85.4 67.79

and ACC, the proposed LSC-RH and LSC-KH methods out-
perform other accelerated methods on the four real-world
datasets. Especially on the datasets of TDT2 and PenDigits,
the improvement by the LSC-KH method is significant. That is
because the LSC-KH method uses K-means for data partition
to find the hubs, which can find more important landmarks
than the random partition in LSC-RH. However, as reported
in Table II, LSC-KH consumes more clustering time than LSC-
RH due to the additional time to perform K-means. On the
four datasets, all the accelerated spectral clustering methods
reduce the clustering time of the original spectral clustering
method, especially for the dataset SenVehicle that has the



(a) NMI (b) ACC

Fig. 4. Clustering results by varying the number of landmarks on PenDigits.

(a) NMI (b) ACC

Fig. 5. Clustering results by varying the number of nearest landmarks on PenDigits.

largest size, the time reduction is the most significant. We also
note that the clustering time of the LSC-RH method is very
close to other compared accelerated methods, while it obtains
better clustering accuracy than other compared accelerated
methods.

The clustering results in terms of NMI and ACC by varying
the number of landmarks p on the datasets of TDT2 and
PenDigits are shown in Figs. 3 and 4. The proposed LSC-
RH and LSC-KH methods achieve better clustering results.
LSC-KH performs better than other compared methods as the
number of landmarks varies in most of the cases.

As shown in equation (8), we construct the sparse repre-
sentation matrix H by measuring the similarity of a single
data point to its r nearest landmarks. Thus, we also evaluate
the clustering results by varying the parameter r, i.e., the
number of nearest landmarks. Fig. 5 shows how the clustering
results in terms of NMI and ACC vary with the number of
nearest landmarks on the dataset PenDigits. It can be seen that
the proposed LSC-RH and LSC-KH methods achieve good
performance with the r varying from 3 to 10.

V. CONCLUSION

In this paper, we proposed an accelerated spectral clustering
method based on sparse presentation by selecting the hubs as

the landmarks. Taking advantage of the topological property of
hubs, the proposed method found a good sparse representation
for the original data points, by representing the original data
points as the linear combinations of the landmarks. The
spectral embedding of the data could be efficiently computed
to scale linearly with the problem size. In the experiments, we
implemented two versions of the proposed method, i.e., LSC-
RH and LSC-KH which are based on random partition and
K-means partition, respectively. Experimental results on both
synthetic and real-world datasets demonstrated the effective-
ness of LSC-RH and LSC-KH in comparision to the existing
related methods.
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